追星引力波光学瞬态观测器即将注视整个天空

最近,引力波引起了人们的极大兴趣。在2015年LIGO /处女座首次被正式发现后,已有数据表明这些曾经的理论现象实际上是多么普遍。通常,它们是由不可想象的暴力事件引起的,例如合并的一对黑洞。此类事件还倾向于发出另一种现象-光。迄今为止,很难观察到与这些引力波发射事件有关的任何光学现象。但是,一组研究人员希望通过完全实施重力波光学瞬态观测器(GOTO)望远镜来改变这种状况。

GOTO专为发现和监视其他仪器(例如LIGO)从中检测引力波而形成的天空部分而设计。它的原始版本称为GOTO-4原型,于2017年上线。该原型机位于加那利群岛的拉帕尔玛市,由四个“单元望远镜”(UT)组成,它们安装在一个18英尺的蛤壳式圆顶中。到2020年,该原型机升级到8个UT,从而可以看到更广阔的天空。

由于众所周知,很难确定重力波的方向性,因此宽视场对于检测基于重力波的光学现象的工作是必不可少的。望远镜的视野越广,它越有可能检测到发生的事件。

因此,GOTO的运营商于2020年开始了升级计划。这些升级包括在同一天文台的一个单独圆顶中再增加8个UT,这将在2021年初添加。更雄心勃勃的是,该团队计划重建这两个在澳大利亚新南威尔士州的斯丁春天天文台的拉帕尔玛岛的单元阵列。根据最近的一篇论文,有了这些望远镜在世界的对面,GOTO将“启用接近24小时的观测,以确保GOTO能够在警报发生时做出反应”。

这些警报是GOTO观测计划中极为重要的部分。它们来自美国宇航局的伽马射线协调网络(GCN),这是一个警报系统,不仅监视引力波,而且还监视可能产生有趣的光学数据的其他现象,例如千新星或伽马射线爆发。

GOTO通过其软件包监控该网络,这也是整个系统运行的关键组成部分。GOTO望远镜控制系统(G-TeCS)是一个自定义编写的Python脚本,用于监视感兴趣的信号,计算哪个信号是最高优先级,然后将望远镜实际移动到观察位置。它还能够在不到30秒的时间内完成所有这些操作,从而可以非常快速地进行周转,从而观察到这些令人感兴趣的瞬态现象。

免责声明:本文为转载,非本网原创内容,不代表本网观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。